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Summary: This article focuses on the process of matching old hydrographic networks ex-
tracted from Cassini maps.The inherent specificities of such data make conventional 
methods for matching networks inefficient. We propose a novel hierarchical approach to 
match hydrographic networks, by extracting natural structures called strokes. Each stroke 
is then classified according to its weight in terms of hydrographic structure within the 
graph. The hierarchical selection of candidates and the use of a multi-criteria decision 
making process (AHP) constitute a good strategy to match imperfect hydrographic net-
works. 

 
 

 Introduction 
 

Old maps are the legacy of the topographic evolution of the French landscape, the densification of 
its territory, the evolution of its population distribution, that are the consequences of demographic 
growth, industrialization and technological improvements. Through the study of Cassini maps and 
Etat-Major maps (XVIIIth and XIXth centuries), combined with a reference vector topographic 
database of the French national mapping agency (BDCarto), the research project GeoPeuple pro-
poses a geo-historical and spatio-temporal analysis of the relations between the evolution of the 
topography of the French territory and its population distribution. This project explores different 
disciplines and unites a number of research partners: the French mapping agency (cartography and 
geomatics), LaDeHis (history and demography) and LIP6 (informatics and pattern recognition).  
The spatio-temporal analysis to be provided requires the integration of vectorized data extracted 
from cartographic databases, and thus the matching of homologous entities at different times, tak-
ing into account the imperfections of the information provided by the data, the various scales and 
levels of detail, as well as the goals of the cartographic representations (military or public target, 
etc.).  
The multi-temporal data-matching has already been achieved in the case of punctual entities ex-
tracted from Cassini maps (Costes et al. 2012): objects with religious purposes (churches, chapels, 
etc.), urban vocation (places, center of communes, etc.) or even industrial purposes (mines and 
mills).  
This article proposes a novel approach to match hydrographic networks vectorized from Cassini 
maps, taking into account the various inherent imperfections of data: significant geometric  
discrepancies between networks, varying levels of detail, inaccurate location of Cassini vector 
data, especially in steeply sloping areas, and significant semantic and toponymic incompleteness.  
At first, we detail the data used and their imperfections. In a second step, we describe the novel 
network-matching process implemented. Finally, we provide an evaluation of our methodology 
and a discussion about the results obtained. 
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Matching Cassini's hydrographic network 
 

Vectorized hydrographic network 
 

During the first stage of the Geopeuple project, three Cassini maps have been georeferenced and 
vectorized, each one covering different landscapes (Geopeuple 2012): Saint-Malo (sea coast), 
Reims (lowland area) and Grenoble (mountain area). To compare such extracted entities with cur-
rent topographic information, we use a reference vector database of the French mapping agency 
(BDCarto) (Fig. 1).  
The inherent imperfection of geographical data (Goodchild 1995, Hunter 1998) is especially  
pronounced for data extracted from Cassini maps. Indeed, the georeferencing study has  
highlighted strong inaccuracies characterized by significant and random discrepancies between 
past and present networks (Geopeuple 2012, Costes et al., 2012), more particuraly marked in 
steeply sloping areas. Moreover, a lot of uncertainties such as rivers passing north of villages in 
the past whereas they go around it nowadays, but also relative positioning of localities some with 
regard to the others not consistent with their current location (Fig. 2), decrease the confidence one 
can have about the reliability of old data. Last but not least, they suffer from a significant seman-
tic and toponymic incompleteness (most of watercourses are not named). 

 

 
Figure 1: Nowadays hydrographic network superimposed on old Cassini map. 

 
Those imperfections are directly attributable to data entry, as well as to the maps themselves.  
Indeed, the location of the different objects during the mapping process by triangulation tech-
niques was approximate. The routes of watercourses could have been even modified by the car-
tographers, in order not to disturb the drawing of others entities such as religious information that 
was considered the highest priority. All those imperfections make conventional network matching 
methods inefficient. 
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Figure 2: Topological contradictions between relative positions of localities in the past (red) and today (blue). 

 

Existing approaches of matching network 
 

To match networks depicting the same reality at different time, that is to say in order to find out 
homologous entities in various datasets, one needs to properly define in what extent two polylines 
are similar. Many criteria can be used, such as topological, geometrical or semantic comparison, 
and each one of them can be measured by different distances. Developing a matching process in-
volves making a choice of what criteria will be used, and how they will be combined. Devogele 
(1997) matches networks with different level of details. The matching of edges relies on a pre-
matching upstream of nodes, based on criteria of geometric proximity, topological similarity and 
shortest paths. Mustiere (2006) and Mustiere & Devogele (2008) test and improve this approach 
on databases with various resolutions. (1:25000 and 1:50000). A similar method is proposed by 
Lusher et al (2007) to match data with significantly different scales (1:2500 and 1:200000), based 
on the combination of topological and angular criteria for the pre-matching of nodes.  
Walter and Fritsch (1999) use a statistical approach to match networks with relatively similar lev-
els of detail. Candidates for matching are selected by a growing buffer technique, then a set of 
indicators are calculated for each one: length, baseline orientation, etc. The decision is made by a 
local optimization algorithm. In another approach, Zhang et al (2005) also use a growing-buffer-
based method with an auto-adaptive radius.  
All these approaches essentially rely on geometric and topological criteria. Thus, they are ineffi-
cient to match networks with as much imperfections as the hydrographic network extracted from 
Cassini maps. Figure 3 shows an example of strong discrepancy between the two networks that 
make difficult their matching with such methods.  
To our knowledge, only a few network matching processes are adapted to imperfect data. The in-
accuracies of data can be managed by the development of a multi-criteria method based on cost 
functions (Costes et al. 2012) or also evidence theory (Olteanu 2008), but such techniques are lim-
ited when all the criteria suffer from imperfections. Furthermore, the algorithmic complexity of 
the approach used by Olteanu (2008) remains a major concern. Finally, such methods generally 
need additional knowledge to properly define the parameters of the process, as it is the case in 
Costes et al. (2012) and in Walter and Fritsch (1999). A comparative evaluation of these methods 
will be given further. 
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Figure 3: Topological and geometrical discrepancies can make traditional matching approaches inefficient. 

 

Hierarchical network matching 
 

We propose a novel approach to match hydrographic networks adapted to old data, based on a 
hierarchical multi-criteria technique, by highlighting the main watercourses called strokes, classi-
fied according to their weight in term of hydrographic structure. The classification proposed takes 
into account the branches of the networks. This approach consists of three main steps. Firstly, we 
make the two networks more structurally comparable by changing how they are represent-ed. 
Then we look for couples of potential candidates for matching using a hierarchical selection that 
respects the organization of the networks. Finally, we use a multi-criteria decision making to 
choose the best couples of candidates (Fig. 4). 
 

 

Figure 4: Global scheme of the hierarchical multi-criteria approach. 

 

Making networks more comparable 
 

To make the two networks more structurally comparable, we choose to switch their mode of rep-
resentation by extracting natural entities called strokes (Thomson and Richardson 1999), or natu-
ral roads (Jiang et al. 2008), based on the continuity principle of Gestalt. These strokes consist of 
a sequence of individual segments that represent continuous hydrographic objects such as rivers 
and streams.  
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Jiang et al. (2008) propose an algorithm called « every best fits » to build natural roads that rely 
on angular criterion at junction point. Although the algorithm fits well for building natural struc-
tures with good visual continuity, it does not take into account the topological imperfection of 
networks (Fig. 5).  
To overcome this issue we choose to use an approach similar to that of Jiang et al. (2008), while 
also taking into account semantic and toponymic information. Strokes thereby represent at best 
the rivers, streams, brooks, etc. 
 

 
Figure 5: Strokes extraction according to Jiang et al. (2008) on the left, and our method on the right. 

 

A classification of Horton (Horton 1945) on a hydrographic network consist in assigning a num-
ber to each stroke, his order, that is a function of the number of its tributaries : «any watercourse 
without tributary is of order 1, any watercourse with a tributary of order n is of order n+1». 
Thomson and Brooks (2000) use this classification in order to generalize hydrographic networks. 
Nevertheless, the classification of Horton strongly depends of the level of detail of the networks. 
Indeed, as the classification starts on the leafs of the graphs, the main stroke (that is to say the 
stroke without any tributaries) of respectively a highly detailed network and a network with a 
lower granularity might have different order. To avoid this situation and make sure that the main 
strokes of various network will have the same order, we amend the classification of Horton by 
initializing the algorithm not on the leafs but on the roots of the graphs. Thus, the order 1 is 
assigned to the main strokes without any tributaries. The order of a stroke reflects its weight (im-
portance) in term of hydrographic structure within the graph. The classification obtained remains 
however dependant on the selected area for the study. Therefore we need to make sure that the 
selection of the networks does not induce artifacts in the classification made. For the rest of the 
article, the parent of a stroke of order n will be the stroke of order n-1 which has the stroke of or-
der n as tributary.  
 

Hierarchical selection of matching candidates 
 
The matching algorithm does not work on the input networks, but uses the strokes as a new 
modelization of the hydrographic networks. For a given step of the process, let sref be the stroke 
of the reference network to be matched. The n candidates {c1,…,cn} for matching with stroke sref 
are selected as follows: for either sref is matched with ci's parent, or sref's parent is 
matched with ci, or sref's parent is matched with ci's parent (Fig. 6). Thus, the selection al-gorithm 
depends on the hierarchical structure of the network together with previous matched couples. 
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Figure 6: Hierarchical selection and matching of strokes candidates. 

 

Multi-criteria decision making 
 
Each stroke potentially has several candidates for matching. We choose the best one through the 
use of a multi-criteria analysis technique, the Analytic Hierarchy Process (AHP) implemented by 
Thomas L. Saaty (Saaty 2008). The AHP is a powerful tool for making complex multi-criteria 
decisions and is commonly used in fields such as business, industry, etc. It is based on a hierar-
chical analysis of various criteria and candidates in order to reach a given goal (Fig. 7).  
In our context, the objective to achieve is to extract the best candidates from the set of potential 
candidates for matching if it exists. In that purpose we use 5 criteria. Four of them are quite clas-
sical for matching networks and can be used whatever the data to be matched. The fifth is specific 
to our study. The theoretical principle of the AHP will be illustrated in our matching context. 

 

 

Figure 7: The principle of an AHP in the context of data matching. 

 

Criteria used 
 
We measure the distance between two strokes by the calculus of their discrete Frechet distance, 
which is an approximation of the Frechet distance calculated in a polynomial time (Eiter and 
Mannila 1994) (Fig. 8). This distance quantifies not only the space between two polylines, but 
also their shape difference. 
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Figure 8: Frechet distance between two polylines. 

 

The difference of orientation between two strokes is given by the angle between the main direc-
tions of the strokes. The main direction of a polyline is defined from the contributions of the ori-
entation of each segment that make the polyline to the global orientation (Hangouët 1998). The 
longer a segment is, the more its orientation contributes to the main orientation (Fig. 9). 
 

 
Figure 9: Global orientation of polylines. 

 

The use of only a geometric distance as a geometric criterion is not enough, because two broadly 
similar geometries can have a significant Frechet distance while the strokes follow rather well 
overall, if the lines deviate at one end point. This criterion ensures that two geometries do not de-
viate too far from each other globally. It is based on the measure of the inclusion rate of a pol-
yline to control into the epsilon band (Goodchild 1997) (buffer of ratio epsilon) of the reference 
polyline (Bel Hadj Ali 2001) (Fig. 10). 
 

 
Figure 10: Global proximity criterion. 
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We use a toponymic distance that is an improvement of the toponymic distance implemented by 
Samal et al. (2004), based on the Damarau-Levenshtein distance (Damarau 1964), an attractive 
expansion of the Levenshtein distance (Levensthein 1965) because it take into account more than 
80% of spelling mistakes.  
We introduce a new criterion that is specific to our study of matching old hydrographic networks. 
It relies on the assumption that most of the relationships between the hydrographic network and 
points of interest have been preserved until now. Indeed, in the context of the Geopeuple project, 
we focus on the major watercourses that serve localities and are potentially involved in the 
changes affecting them. We suppose that if a river passed close to a village in the past, this re-
mains true today. If we can identify the homologous localities, villages, mills, etc. close to a wa-
tercourse in each data base, we might assume that the corresponding watercourses are also 
matched.  
Thus, this criterion requires an upstream matching of punctual objects extracted from Cassini 
maps, which has already been achieved (Costes et al. 2012): localities, mills, villages, etc. have 
been matched with another reference topographic vector database of the french mapping agency 
(BDTopo). For the rest of the article we assume that the matching links established in Costes et al. 
(2012) have been validated by manual post-processing. An illustration is given in Figure 11. We 
note that the counterparts of Cassini entities close to a river of the 18th century are close to the 
existing watercourse, considering that the concept of proximity is defined by a buffer.  
The criterion is measured by calculating a ratio of matched punctual objects close to strokes can-
didates. 
 

 
Figure 11: introduction of a new criterion based on the distance to already matched punctual entities. 

 

Candidates' regroupment 
 

Given a stoke to match, all its candidates for matching are selected and compared to each other. 
For the following, an alternative will be the choice of a candidate among the other. We also create 
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a fictive alternative, denoted NM (not matched): “the stroke is not matched”, used by the analysis 
process that will be the best choice if none of the candidates is especially noted.  
 

Confrontation of candidates 
 
For each criterion, the scores of the candidates face pairwise. When a candidate of score mi faces 
the alternative NM, we give the latter the score 1-mi, in order to illustrate to what extent we do not 
believe that this candidates is the good match compared to its score.  
An artificial decision maker establishes each alternative's preference (the Fundamental Scale for 
Pairwise Comparisons) (Saaty 2008) (Table 1). It indicates the degree of importance of one alter-
native against the other according to the score of each one for the measured criterion. Let be the 

importance of candidate i against candidate j. Then  . 
 

. 

Table 1: Example of decision maker based on the principle of the Fundamental Scale for Pairwise Comparisons (Saaty, 
2008). 

 
The result of the comparison is then recorded in a matrix of size (n+1)*(n+1), where n is the 
number of confronted candidates. Next, a priorities vector is calculated reflecting the relative im-
portance of each candidate for the measured criterion. This vector actually is the major eigen-
vector of the matrix. The AHP is particularly interesting because it provides a consistency ratio 
(CR) that allows an assessment of the calculations. In other words, the CR indicator indicates in 
what extent the values established by the decision maker are consistent one with each other. In 
practice, we try to ensure that CR<0.10 (Saaty 2008). For instance in Table 2, the candidate 1 pre-
vails logically for the given criterion. 
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Table 2: Example of comparison matrix for an arbitrary criterion. 

 

Confrontation of criteria 
 

The AHP allows to weight each criterion based on the importance we grant it in respect to each 
other criterion. That is to say one can define a weights matrix of size m*m, where m is the number 
of criteria (here m =5), which adds much finesse in the definition of relative importance of each 
criterion, usually done by experts. From this confrontation matrix, a priorities vector and an in-
consistency ratio are calculated as done previously.  

 
Decision making 

 
For each candidate, a global priority is calculated, by combining the priorities of the candidate in 
respect with each criterion, and taking into account the relative priorities of each criterion one 
with the others. Let (C1, ..., CN) be n candidates, (αi,1, … αi,N) the priorities vector defined by the 
confrontation of the set of candidates for the ith criterion, and let (p1, ..., pm) be the priorities vector 
calculated by the confrontation of the m criteria. Then the global priority P(Cj) for candidate Cj is 

given by: .  The candidate with the higher global priority is thus chosen. The 
object is declared not matched if the alternative NM is chosen.  
 

Post-treatment of not matched strokes. 
 
Unmatched strokes are then treated separately, and for each of them we apply the matching algo-
rithm of Mustiere and Devogele (2008). We restrict the matching to the sub-network consist-ed of 
the stroke studied and strokes connected to it, in order to avoid introducing side effects, giv-en the 
topological simplification that is made here. The matching links established by this step are then 
referred to as uncertain and require manual verification post processing.  
 

Assessment of results 
 

Measurements of the quality of the matching 
 
To assess a matching process, we usually calculate the precision and recall of both the matching 
links and the unmatched objects, respectively noted as Papp, Rapp, and Pnap, Rnap.  
We traditionally call: true positive (vrais positifs) the matching links correctly established by the 
automatic process (vp), false positive (faux positifs) the links in excess (fp), true negative (vrais 
negatives) the objects correctly unmatched (vn) and false negative (faux negatives) the objects 
mistakenly unmatched (fn). Let Napp be the number of matching links expected and Nnap the num-
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ber of unmatched objects expected. We also intro-duce a measure that equally combines precision 
and recall, called FScore: 

 

 
 

Results 
 

The table 3 compares the assessments of the results of our method and two classical matching al-
gorithms (Mustiere and Devolege 2008, Costes et al. 2012). 

 

 
Table 3: Quantitative results of the assessment of thee data matching approaches. 

 

All three methods own many parameters, and several combinations have been tried so that we can 
compare the best results obtained by each of the approaches. Figure 12 illustrates that most of the 
main hydrographic structures have been correctly matched. The assessment shown by Table 3 
emphasizes that our approach improves significantly the results performed by more classical algo-
rithms: + 18 % (resp. + 16%) for matching links (resp. for unmatched objects) in average 
compared with the algorithm of Mustiere and Devogele (2008); + 17 % (resp. + 9%) for matching 
links (resp. for unmatched objects) in average compared with the approach of Costes et al., 
(2012). The computation time is also improved in average. 
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Figure 12: Example of matching for the area of Grenoble (2 mistakes shown in orange). 

 
Discussion 

 
We want to analyze the relative importance of each criterion in our context of matching Cassini 
hydrographic network. For the study, we consider that all the weights of the criteria matrix are set 
to one. It is surprising to note (see Table 4) that, except for the Grenoble area, the results are im-
proved when the geometric criterion is not used. We interpret this result as a consequence of the 
significant geometrical discrepancies between networks. For Reims and Grenoble, orientation, 
proximity and toponymic criteria seem to be essential. The role of the toponymic criterion de-
pends on the number of nominated Cassini watercourses: as they outnumber on the area of Reims, 
this criterion is logically more critical for this zone, whereas only less than 5% of St Malo rivers 
have a name.  
The special criterion, measured by proximity to matched punctual entities, appears to be only a 
little crucial, but still improves the results somewhat. Furthermore, it increases the global score of 
low order strokes, a fact that can be interpreted as a stronger probability of correct matching. 
 

 
Table 4: Scores obtained by the suppression of some criteria. 
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Conclusion 
 
In this article we have focused on the matching of an hydrographic network extracted from Cassi-
ni maps with a reference topographic vector database of the French mapping agency (BDCarto). 
The matching of old map is a difficult task because of the inherent imperfections of such data, 
especially when the data are nearly 250 years apart in age. In our context, these imperfections 
concern particularly a significant geometric discrepancy between networks, varying levels of de-
tail, inaccurate location of Cassini vector data, especially in steeply sloping areas, significant se-
mantic and toponymic incompleteness and topological inconsistency between homologous enti-
ties. These imperfections make conventional network matching methods inefficient. We propose a 
novel approach of matching hydrographic networks based on the respect of the hierarchical struc-
ture of these networks. We firstly switch the representation of the network through an enrichment 
step, by the detection of natural structures of good continuity called strokes that represent at best 
the real hydrographic entities such as the rivers, streams, etc. The hierarchical layout so defined 
thus can be used as a pivot for the matching process, retaining among potential candidates those 
whose parents or themselves have been previously matched. The hierarchical selection of stroke 
candidates for matching, combined with the use of an efficient multi-criteria analysis technique 
(AHP) improve significantly the results obtained by  
geometrical-based and topological-based approaches, or non-hierarchical multi-criteria methods. 
Furthermore, we introduce a new criterion measuring the proximity of each stroke to points of 
interest. This criterion requires an upstream matching of punctual objects extracted from Cassini 
maps (places, mills, etc.). The criterion is measured by calculating the ratio of matched punctual 
objects close to strokes candidates, and relies on the assumption that most of the relationships be-
tween the hydrographic network and these points of interest have been preserved until now. 
The main limitation of the approach concerns the leaves of a highly branched network due to the 
hierarchical structure of the process. Nevertheless, the main waterways are properly matched, and 
their current counterpart clearly identified. The use of the AHP to make a decision raised the issue 
of its parameterization. A preliminary sensitivity study of the algorithm suggests that the results 
are improved when the Frechet distance criterion is not used due to the significant discrepancies 
between networks. Both orientation and proximity criteria seem to be the most important on our 
tested data, together with the toponymic criterion if enough watercourses are named. The new cri-
terion introduced increases the global score of high order strokes, even if it does not improve that 
much the results. In the short term, it would be interesting to deepen the sensitivity study of the 
parameters of the AHP.  
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