
e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[59]

Chris Fleet

An open-source web-mapping toolkit for libraries

Keywords: historical maps; web publishing; OpenLayers; web-mapping; open-source

Summary: This paper describes and explains a set of open-source viewers and tools which can

be used to deliver maps in an online environment. It is based on the current web-mapping

technologies used by the National Library of Scotland over the last six years. The tools can be

classified into those supporting search and retrieval, and those creating interfaces for historic

georeferenced map layers. All of these viewers and tools have been made available on Github

with commented code to encourage their onward use and future collaborative development by

other libraries.

Introduction

Over the last six years, all of the National Library of Scotland’s main web-mapping applications

have been based on open-source technologies, particularly GeoServer and OpenLayers. One of the

advantages of this is that it fosters collaborative development of the code and applications.

Another advantage is that it reduces or eliminates the costs of licensing proprietary software.

Open-source technology also democratises the development of the applications themselves — the

applications are not in the hands of an external “expert” or company — and the applications

should be more future-proof and stable with a widespread user community supporting their

ongoing maintenance.

Of course, it is necessary to qualify these broad statements, and also recognise the limitations of

these technologies in order to properly appreciate their role. For NLS, the open-source

technologies rest upon a bedrock of proprietary software too, both at server level (eg. SQLServer,

Windows IIS), as well as in terms of desktop applications (eg. ArcGIS, MapTiler). It is fully

recognised that the open-source applications described below do not provide all of the

sophisticated functionality of certain proprietary or institutional applications, such as

OldMapsOnline1, ArcGIS Online2, MapRank Search3, GeoReferencer4, or CartoMundi5. These

applications have been developed with significant technical expertise to do comparable functions

— for example, the search, retrieval, and viewing of maps — and the applications described in

this paper, by way of contrast, may offer value more in terms of retaining local control and

ownership over functionality, in them being free to licence and develop, or in their ability to

provide the basis for other customised or bespoke applications. It is assumed that there is a place

for both proprietary and open-source applications rather than regarding them as alternatives.

By early 2018, the NLS used these applications to make available 200,000 historical maps. At one

level, what follows is a description of recent web-mapping technologies at NLS, but at another

 National Library of Scotland, Edinburgh [c.fleet@nls.uk]

1
 http://www.oldmapsonline.org/

2
 https://www.arcgis.com/home/index.html

3
 https://www.mapranksearch.com/

4
 https://www.georeferencer.com/

5
 http://www.cartomundi.fr/

c.fleet@nls.uk
http://www.oldmapsonline.org/
https://www.arcgis.com/home/index.html
https://www.mapranksearch.com/
https://www.georeferencer.com/
http://www.cartomundi.fr/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[60]

level it is hoped that some may potentially be of value to other institutions, and their availability

on Github means that they are easy to copy and re-use. The tools can be classified into primary

functions, allowing them to be deployed independently of one another and together. They can be

classified into two main two groupings: first, those that support search and retrieval of maps using

bounding boxes or a marker pin, and second, those for interacting with georeferenced maps. The

georeferenced map viewers can be subdivided into those presenting overlays with a transparency

slider, split-screen comparison viewers, spy viewers, and 3D viewers. More specific tools for

geolocation, gazetteer search, or distance and area measurement can be deployed across any of

these viewers. Most of the viewers use OpenLayers, and some of the search viewers use

GeoServer too for storing and displaying bounding boxes, and for Web Feature Service requests.

In addition to the NLS map interfaces, several examples are finally given of specific tailored

collaborative applications that have been developed using these tools, to try to illustrate their

flexibility and modular nature. GitHub is a widely used code hosting platform and all these map

viewers are placed in specific repositories6. In each repository, it is possible to easily download all

the files to create an immediate working web-mapping application, just like those illustrated. The

Javascript code which drives all these applications is also commented for easy onward use.

Basic components

This paper is not intended to provide a complete guide to OpenLayers, nor to the use of Javascript

for web-mapping, but rather to briefly point to relevant resources on these subjects, and then focus

on the more specific functions that are relevant for map collections. However, it is necessary for

what follows to have a basic overview of the essential components of an OpenLayers map

application. There are excellent guides online to this, including the OpenLayers Tutorials7, the

OpenLayers Workshop8, and the OpenLayers Examples9. The complete API for OpenLayers is

available for reference10, and there are also detailed books on Openlayers, including beginners

guides (Gratier et al, 2015), and more advanced guides too (Farkas, 2016; Langley & Perez,

2016).

Core components of the OpenLayers application

The core component of OpenLayers is the map (ol.Map). It is rendered to a particular target

container, such as a div element on the web page that contains the map. For practical purposes, the

ol.Map is usually combined with an ol.View instance, which controls the way the map is

presented visually through things like its centre, zoom level and projection. For most map

applications using global layers, the default projection is the Spherical Mercator (EPSG:3857),

with meters as map units, but it is easy to transform between projections, and to re-project the

map too. The ol.Map also needs one or more layers, allowing data from various sources to be

presented visually. Three common types are the ol.layer.Tile (for layers providing a subdivided

grid of pre-rendered, tiled images at specific resolutions and zoom levels), ol.layer.Vector (for

point, line or polygon data that is rendered in the client), or the ol.layer.Image (for server rendered

images that are available for arbitrary extents and resolutions). Each of these layers will use an

6
 The NLS Map Github repositories are at: https://github.com/NationalLibraryOfScotland

7
 https://openlayers.org/en/latest/doc/tutorials/

8
 https://openlayers.org/workshop/

9
 https://openlayers.org/en/latest/examples/

10
 https://openlayers.org/en/latest/apidoc/

https://github.com/NationalLibraryOfScotland
https://openlayers.org/en/latest/doc/tutorials/
https://openlayers.org/workshop/
https://openlayers.org/en/latest/examples/
https://openlayers.org/en/latest/apidoc/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[61]

ol.source subclass. Each map will also have default or customised controls, specified through the

ol.control class11 (covering things like zoom buttons, scale clines, attribution, mouse position, and

rotation) as well as default or customised interactions specified through the ol.interaction class12

(eg. different types of zooming, panning and rotation through the keyboard, mouse or screen).

Combining these elements together can create a simple OpenLayers map13 and is the basis of the

more developed functions which follow.

Layer functions, Permalinks, Gazetteers, and GeoLocation

The ability to add or remove layers from the map is another essential set of functions which are

illustrated through the Github FindByPlaceOL4 application (Figure 1). With an array of layers14, a

drop-down selection list15 or a set of radio buttons16 can be created, along with a function to

remove or add layers based on the user interaction with these elements17.

Figure 1: An illustration of a basic OpenLayers map, with the ability to choose layers from radio buttons and drop-down

lists18.

Adding a Permalink suffix onto the end of the URL can be useful for defining the ol.View (with a

specific zoom, lat, and lon), as well as specific layers. The OpenLayers Permalink example

functionality19 provides a way of doing this, although not compatible with all browsers. NLS has

used functionality developed by the DataShine Census Project20, illustrated in the Thomas Annan

viewer Github Project21. First of all, this includes an updateUrl()function22 that creates the

11

 https://openlayers.org/en/latest/apidoc/ol.control.html
12

 https://openlayers.org/en/latest/apidoc/ol.interaction.html#.defaults
13

 https://openlayers.org/en/latest/doc/quickstart.html
14

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L160
15

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L170
16

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L252
17

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L262
18

 http://geo.nls.uk/maps/dev/NLSFindByPlaceOL3/index.html
19

 http://openlayers.org/en/latest/examples/permalink.html
20

 http://datashine.org.uk/
21

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs
22

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L46

https://openlayers.org/en/latest/apidoc/ol.control.html
https://openlayers.org/en/latest/apidoc/ol.interaction.html#.defaults
https://openlayers.org/en/latest/doc/quickstart.html
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L160
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L170
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L252
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L262
http://geo.nls.uk/maps/dev/NLSFindByPlaceOL3/index.html
http://openlayers.org/en/latest/examples/permalink.html
http://datashine.org.uk/
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L46

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[62]

window.location.hash part of the URL with the current zoom=, &lat= and &lon= elements

through an event listener on the map moveend event23. Second, the elements of the URL define

the map view through initially being parsed on the ampersand character24, and then specified as

zoom, lat and lon variables25, which are then integrated into the main ol.map parameters26. Default

zoom, lat and lon parameters are defined for the initial page load if the URL suffix is not

specified. It is also possible to define additional elements, such as background or overlay layers,

as well as the point the user clicked on, to effectively allow all elements of the application to have

a permalink quality.

Gazetteer functionality, allowing a set of names to be queried, and the map positioned on the

place selected, is an intrinsic part of web-mapping operations, and can be implemented using

standard OpenLayers ol.Map operations to centre the map on an x,y point or a bounding-box

extent. At its simplest level, a set of locations for which x,y points are known can be presented as

a scrollable list in alphabetical order, and upon the user selecting a particular place, a function is

initiated to locate the map to the particular x,y location at a specified (relatively detailed) zoom

level. More sophisticated gazetteer functionality can query larger gazetteers dynamically, with

autocomplete options on the search input box, and the ability to locate on extents as well as

points. The OSMNames27 gazetteer is a good example, querying the OpenStreetMap Nominatim28

gazetteer with autocomplete responses in an almost instantaneous manner, retrieving results that

are ranked hierarchically with qualifiers for the broader geographic area and type of feature. The

Google Maps Geocoding API gazetteer search functionality29 has a broad and detailed content,

especially good for postcodes and urban features, with quick autocomplete results too, but cannot

be used with different map backgrounds to Google layers. There are other geocoding APIs

available for gazetteers too, such as the MapBox GeoCoding API30, or the ESRI REST API World

Geocoding Service31.

For several other functions, there are OpenLayers examples that make it very easy to incorporate

these into another application. For example, the OpenLayers Geolocation32 functionality, based on

the W3 Consortium Geolocation API Specification (2016)33 makes it easy to add ‘Find my

Location’ or related geolocation tracking facilities. Further below, examples are given of the

“Measure distance / area” functionality for georeferenced maps, and “Amination” functionality

when moving. The important point is that simply by combining these functions together, a

relatively sophisticated web-mapping application can be created. At its heart is a zoomable,

pannable and rotatable map, with controls such as scalelines, mouse positions, attributions, etc.

Underlying map base layers and overlaid layers can be easily specified, added and removed with

radio or drop-down lists. The map details, including its centre, zoom level and layers, can be

dynamically specified in a Permalink-style URL. And the map can also be positioned through a

range of gazetteer operations. These combined functions form the basis of the two main generic

types of web-mapping applications described in the following sections: firstly, interfaces for

23

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L412
24

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L20
25

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L194
26

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L230
27

 http://osmnames.org/
28

 https://nominatim.openstreetmap.org/
29

 https://developers.google.com/maps/documentation/geocoding/intro
30

 https://www.mapbox.com/geocoding/
31

 https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm
32

 http://openlayers.org/en/latest/examples/geolocation.html
33

 https://www.w3.org/TR/geolocation-API/

https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L412
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L20
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L194
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs/blob/master/js/annan.js#L230
http://osmnames.org/
https://nominatim.openstreetmap.org/
https://developers.google.com/maps/documentation/geocoding/intro
https://www.mapbox.com/geocoding/
https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm
http://openlayers.org/en/latest/examples/geolocation.html
https://www.w3.org/TR/geolocation-API/
https://www.w3.org/TR/geolocation-API/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[63]

searching and retrieving maps using bounding boxes, and secondly, interfaces for displaying

georeferenced maps.

Interfaces for searching and retrieving maps

From the earliest years of the development of series mapping, the paper graphic index established

itself as the vital, and sometimes the only way of searching for series maps for good reason. It

recognises that the primary purpose of the search is to retrieve maps of a specific place; as series

maps subdivide the wider geographic territory into regular polygons, a spatial search is the most

effective access method (Fleet, 2006). Web-mapping technology allows the graphic index to

become more flexible and useful, as an infinitely zoomable bounding box overlay, styled with

different colour, line thickness, and fill for particular purposes or at particular zoom levels,

overlaid on a range of different and user-selectable base layers.

Bounding Box interfaces using GeoJSON files

One of the quickest and easiest ways of presenting a map graphic index online is through a

GeoJSON layer34. GeoJSON layers can be easily created from any other vector format, such as

the ESRI Shapefile or a KML formats. The GeoJSON format allows the coding of many standard

types of geometry, along with property attributes about each geometry object, and can be easily

viewed and edited inside GIS or online at geojson.io. The NLSFindbyPlaceGEOJSON35

application uses OpenLayers and GeoJSON graphic index files to form a geographical retrieval

interface for historical maps. The GeoJSON source files are brought into ol.layer.Vector layers in

the application through the ol.source.Vector class36. When the user clicks on the map it initiates a

map.forEachFeatureAtPixel selection query37 to the GeoJSON file, returning features that

intersect with the point clicked upon. The selected feature or features can be easily styled to

display prominently, and the feature properties, from the GeoJSON file, can be presented in a

pop-up box or a results div element. With the steady growth in client-side computational power,

there is a growing potential to do more with GeoJSON files. However, for very large sets of maps

with multiple property elements, the size of the GeoJSON files can still cause problems. For this

reason, for making available larger sets of maps, server-side solutions, holding the graphic index

files inside GeoServer, for example, are more robust.

Bounding Box interfaces using shapefiles in GeoServer

GeoServer38 provides a convenient, easy, widely-used and open-source server technology for

storing and presenting many types of geospatial data online, based on common open-standards.

The background to the NLS’ use of GeoServer as a web-mapping retrieval interface are described

in Fleet & Pridal (2012), with the initial application designed and implemented by Klokan

Technologies using OpenLayers 2. The basic application was made available as an open-source

application in 2015 — NLSFindByPlaceOL339. The boundaries of historic maps are held as

34

 http://geojson.org/
35

 https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON
36

 https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON/blob/master/find.js#L195
37

 https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON/blob/master/find.js#L316
38

 http://geoserver.org/
39

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3

http://geojson.io/
http://geojson.org/
https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON
https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON/blob/master/find.js#L195
https://github.com/NationalLibraryOfScotland/NLSFindbyPlaceGEOJSON/blob/master/find.js#L316
http://geoserver.org/
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[64]

shapefiles within GeoServer, pre-rendered using and customised for display using GeoServer

Styled Layer Descriptors. GeoWebCache then creates a tileset of images of the shapefile at preset

zoom levels for a specified coordinate system, in our case, the Google Spherical Mercator

projection (EPSG:3857). As a pre-created tileset, this can be displayed very quickly, even for

massive shapefiles, through the ol.layer.Tile layer, using the ol.source.XYZ source.40 When the

user clicks on the map to select a feature, it initiates a Web Feature Service (WFS) request41 to

GeoServer, querying the specified layer on screen for features that intersect the point clicked

upon. There are various ways of specifying the query within the WFS standard, as well as the

format of the results. In our case, we receive the results as a GeoJSON text string, which can be

sorted, if necessary, into date order, and is then output in a Results div element, whilst the feature

geometry populates a new vector layer, styled to display the feature in a highlighted style.

There are many enhancements on the basic application that are possible. A useful function is the

ability to link the specific map in the right-hand results to its particular selected bounding box,

where the results show maps with varying extents (Figure 2). This can be done through an ID

element for each feature in the shapefile, which is returned in the GeoJSON. On the map, a

map.forEachFeatureAtPixel selection query, initiated on a 'pointermove' event, can return specific

details of the selected maps, which can then highlight the same map in the Result div through

jQuery. A similar jQuery function works in reverse, triggered by the mouse entering the Results

div and a particular returned map li element, highlighting the selected map in the main map div,

through a map.getLayers().getArray()[2].getSource(); query.

Another possible enhancement is the ability to fade the opacity of the whole bounding box layer

or layerss from GeoServer. Having quite a dense fill (for example to show greater map coverage

in specific places) can be useful, but it is helpful too in these circumstances to be able to fade the

opacity. This is implemented through a Bootstrap transparency slider42 and a line of code to alter

the transparency of the GeoServer layer:

map.getLayers().getArray()[1].setOpacity(opacity);

Figure 2: The Find by Place - with Bounding Box viewer (http://maps.nls.uk/geo/find/).

40

 https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L186
41

 http://www.opengeospatial.org/standards/wfs
42

 http://seiyria.com/bootstrap-slider/

http://maps.nls.uk/geo/find/
https://github.com/NationalLibraryOfScotland/NLSFindByPlaceOL3/blob/master/find.js#L186
http://www.opengeospatial.org/standards/wfs
http://seiyria.com/bootstrap-slider/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[65]

Marker interfaces using shapefiles in GeoServer

Bounding Box interfaces for map search are probably the most familiar and intuitive for map

librarians and tend to be preferred by more expert users. However, they have the disadvantage that

for large quantities of maps, the multiple indexes cannot be displayed simultaneously on screen

without producing a mass of rectangular spaghetti, and so the user needs to potentially work

through many different layers of bounding boxes to see maps in all layers for the same place.

Some users also want instant results from queries along the lines “I want to see all the maps there

are covering this place?” For these reasons, a Marker Interface is a possible alternative.

NLS introduced a Find by Place - with Marker application in 2017, using the Google Maps

Javascript API and GeoServer to form a basic search and retrieval interface43. The idea for the

application came from the Charles Close Society’s Sheetfinder application44, and collaborative

work in 2016-17 with them to incorporate results from the NLS online collection. A similar

application could easily have been created with OpenLayers, as the main Javascript functions are

easily transferable, but we were keen to use the Google Map interface for two reasons. First the

the Google Places API Web Service45 is better for some urban features and postcode searching

than the OSM Nominatim gazetteer, and second, Google Maps are instantly familiar and preferred

by some users to alternative global map services. Although there have been efforts to combine

Google Maps and OpenLayers, for example by Mapgears46, the two different applications have

quite different aims, and the resulting viewer has some limitations47.

The Find by Place - with Marker application allows the user to zoom in on an area of interest, or

use the gazetteer to do so, with an option to change the map base layer between Google Maps or

Satellite layers, and a 1900s historic layer (Figure 3). The location of the marker initiates a Web

Feature Service request to GeoServer, returning records for maps whose bounding boxes cover the

marker location. A jQuery slider provides a way of narrowing the date range of the returned maps.

By default, the maps returned reflect the approximate scale of the map (small-scale, medium-

scale, and large-scale), but this can be changed by the user to return all scales. At the time of

writing, NLS does not have scales recorded for all online maps, and so the three scales select

particular layers in the GeoServer queries, rather than a direct and more precise numeric range

filter.

43

 The live application is at: http://maps.nls.uk/geo/find/marker/ and the Github application is at

https://github.com/NationalLibraryOfScotland/FindbyPlace---with-Marker
44

 http://sheetfinder.charlesclosesociety.org/
45

 https://developers.google.com/places/web-service/
46

 https://github.com/mapgears/ol3-google-maps
47

 https://github.com/mapgears/ol3-google-maps/blob/master/LIMITATIONS.md

http://maps.nls.uk/geo/find/marker/
https://github.com/NationalLibraryOfScotland/FindbyPlace---with-Marker
http://sheetfinder.charlesclosesociety.org/
https://developers.google.com/places/web-service/
https://github.com/mapgears/ol3-google-maps
https://github.com/mapgears/ol3-google-maps/blob/master/LIMITATIONS.md

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[66]

Figure 3: The Find by Place - with Marker application (http://maps.nls.uk/geo/find/marker/).

Interfaces for displaying georeferenced maps

As is well known, georeferencing allows the direct and easy comparison of an historic map with

either modern day satellite or image layers, or with other historic georeferenced content, and the

interfaces are all intended to facilitate this comparison. In order for large georeferenced map

images, or wider sets of series maps presented as a seamless layer, to display fast in web-mapping

viewers, the images need to be processed. There are a number of open and proprietary ways of

doing this, which are beyond the scope of this paper. The assumption is made here for the

georeferenced map viewers below, that the georeferenced maps are available in an appropriate

standard tiled (x,y,z) format, such as the OGC Web Map Tile Standard48, the OSGeo Tile Map

Service49, or MapBox’s TileJSON50 or MBTiles51 formats. For many years, the NLS has happily

used Klokan Technologies’ MapTiler application for this purpose, which also generates default

web-mapping viewers, including an OpenLayers viewer, for each tileset, and these are referred to

in the examples which follow.

Map overlay viewer

The basic NLSExploreGeoreferencedMaps overlay viewer52 incorporates standard features

described above, including a Bootstrap transparency slider53, with a line of code to alter the

transparency of the GeoServer layer: map.getLayers().getArray()[1].setOpacity(opacity);

Various enhancements can easily be made to this viewer, using standard OpenLayers code

available as examples. These include tools to measure distances or areas on screen54, so that their

48

 http://www.opengeospatial.org/standards/wmts
49

 http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
50

 https://github.com/mapbox/tilejson-spec
51

 https://www.mapbox.com/help/define-mbtiles/
52

 https://github.com/NationalLibraryOfScotland/NLSExploreGeoreferencedMapsOL3
53

 http://seiyria.com/bootstrap-slider/
54

 http://openlayers.org/en/latest/examples/measure.html

http://maps.nls.uk/geo/find/marker/
http://www.opengeospatial.org/standards/wmts
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://github.com/mapbox/tilejson-spec
https://www.mapbox.com/help/define-mbtiles/
https://github.com/NationalLibraryOfScotland/NLSExploreGeoreferencedMapsOL3
http://seiyria.com/bootstrap-slider/
http://openlayers.org/en/latest/examples/measure.html

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[67]

incorporation in bespoke ways is easy55. The basic overlay popup functionality is also useful56, so

that with a user click (or ALT-click) on a point on the map, a popup will appear with user defined

content, such as locational information for easy copying and pasting (Figure 4). For larger

applications, hosting many layers, a unique id for the layer and additional parameters in the layer

definition can also be used. As seamless map layers are stripped of their marginalia, it is also

useful to be able to display a default legend or key relating to the layer on screen57. The code for

this looks up the map layer on screen, retrieves the default URL for the separate map key image,

and displays this in a popup window.

Figure 4: The Explore Georeferenced Maps viewer (http://maps.nls.uk/geo/explore/), illustrating a popup, generated by a user

click event, with locational details of the point clicked on for copying.

A closely related function is also used to display the particular sheet that the users’ cursor is over

for large georeferenced mosaics. This is helpful for users to view a specific map on its own, as

well as for displaying specific dates of survey, revision or publication in mosaics that span a wider

number of years. A Web Feature Service is initiated to GeoServer using very similar syntax as in

the Find by Place viewers described above. The only difference is that instead of the request

searching for features intersecting the point clicked on, the request searches for all features

overlapping with the bounding box extents of the map view. These are brought as GeoJSON

records into a new vector layer, which displays the specific sheet information in the viewer, based

on a map.forEachFeatureAtPixel query, initiated by the mouse pointermove event (Figure 5).

55

 See, for example, the NLS Explore Georeferenced Maps application, which implements line and area

measurement through a drop-down selection list to the upper right of the screen.
56

 https://openlayers.org/en/latest/examples/overlay.html
57

 The NLS Explore Georeferenced Maps application has a ‘Map Key’ tab to the lower left

http://maps.nls.uk/geo/explore/
http://maps.nls.uk/geo/explore/
https://openlayers.org/en/latest/examples/overlay.html
http://maps.nls.uk/geo/explore/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[68]

Figure 5: The Explore Georeferenced Maps viewer (http://maps.nls.uk/geo/explore/), showing details of the map sheet the

cursor is over, using a Web Feature Service query to GeoServer.

Side-by-side / dual map viewer

A closely related viewer displays two maps side-by-side on screen (Figure 6)58 This makes use of

two ol.Map classes in the code, here called mapleft and mapright. The two views can be

integrated by not specifying a particular centre or zoom in the mapright view, but simply by

having view: mapleft.getView() 59. A slave cross-hair icon can also easily be added, matching the

location of the mouse cursor in the other map window. This is a two-stage process, firstly defining

the cross as a feature, and then adding this to a vector layer in both of the maps60. The second

stage involves a pointermove event handler, recording the cursor coordinates and then adding

these to the icon geometry of the cross feature in the adjacent map window61. A variation on the

Side-by-side / dual map viewer is to implement a sliding central bar, or layer swipe. There is an

OpenLayers example for this62 which we have implemented in the Side-by-side with layer swipe

viewer63.

58

 https://github.com/NationalLibraryOfScotland/SidebySideOL3
59

 https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L271
60

 https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L297
61

 https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L357
62

 https://openlayers.org/en/latest/examples/layer-swipe.html
63

 http://maps.nls.uk/geo/explore/side-by-side/swipe/

http://maps.nls.uk/geo/explore/
https://github.com/NationalLibraryOfScotland/SidebySideOL3
https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L271
https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L297
https://github.com/NationalLibraryOfScotland/SidebySideOL3/blob/master/sidebyside.js#L357
https://openlayers.org/en/latest/examples/layer-swipe.html
http://maps.nls.uk/geo/explore/side-by-side/swipe/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[69]

Figure 6: The Side-by-side / dual-map viewer (http://maps.nls.uk/geo/explore/side-by-side/).

Spy viewer

This viewer is directly based on the OpenLayers Layer Spy viewer64, which is a powerful and

enjoyable way of visualising georeferenced map overlays (Figure 7). The only small enhancement

to this viewer that NLS has made has been to add a Bootstrap slider (described above) to adjust

the size of the radius of the spy circle65.

Figure 7: The Spy viewer (http://maps.nls.uk/geo/explore/spy/).

64

 https://openlayers.org/en/latest/examples/layer-spy.html
65

 This can be seen at http://maps.nls.uk/geo/explore/spy/ with the code for this from lines 650 of

http://maps.nls.uk/geo/scripts/explore-spy.js

http://maps.nls.uk/geo/explore/side-by-side/
http://maps.nls.uk/geo/explore/spy/
https://openlayers.org/en/latest/examples/layer-spy.html
http://maps.nls.uk/geo/explore/spy/
http://maps.nls.uk/geo/scripts/explore-spy.js

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[70]

3D viewer

The ability to drape a georeferenced layer across a 3D landscape has great potential, even if the

use of this in the short term can test older client computational powers and graphics. The easiest

way of doing this with OpenLayers is through the ol-cesium integration project66, based on the

Cesium open-source Javascript library67. This is well documented with easy-to-follow examples,

and much of the existing OpenLayers functions work in the same way without modification.

There is a need to specify additional parameters — for example, the camera distance (height), its

heading (rotation from North), and tilt (angle towards the earth) — and make minor adjustments

to functions involving the map view extents and centre, and the result is a striking “helicopter

view” of past landscapes (Figure 8).

Figure 8: The 3D viewer (http://maps.nls.uk/geo/explore/3d/).

Examples of these viewer functions in other applications

As the above has hopefully illustrated, many of the specific functions and application elements are

shared across the applications, and can easily be combined in new ways for specific purposes. The

following bespoke applications illustrate this:

66

 http://openlayers.org/ol-cesium/
67

 https://cesiumjs.org/

http://maps.nls.uk/geo/explore/3d/
http://openlayers.org/ol-cesium/
https://cesiumjs.org/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[71]

Italians in Scotland in the 1930s

This application68 tries to show where Italians lived or worked in Scotland during the 1930s

(Figure 9). It was created to accompany the free exhibition Family Portrait: The Scots Italians

1890 – 1940 at National Records of Scotland, Edinburgh (December 2015 - 29 January 2016).

The names and addresses are primarily based on the Scottish entries in the 1936 edition of the

Guida Generale Degli Italiani in Gran Bretagna / General Guide to Italians in Great Britain,

published in London. The map tries to indicate approximately where Italians were either working

or living at this period. It is possible to search the alphabetical list of Italians (upper left) and click

on the address to locate the map there. Alternatively, it is possible to zoom in on the map, and at

higher zoom levels, hover your cursor over the circles to view the same details of the Italians at

each location. The map tries to indicate approximately where Italians were either working or

living at this period. It colour-codes the top four provinces from which Italians arrived in

Scotland. These were in descending order: Lucca, Frosinone, Isernia (in what was then part of the

province of Campobasso), and La Spezia. People from Pistoia, Parma, Latina, Massa Carrara,

Pordenone and elsewhere are grouped together as ‘Other Provinces.’ A sixth group consists of

those whose origins are not yet known. The map indicates that over half of the Italian migrants

were settled in and around Glasgow. The Glasgow Italian community was divided between those

who came from the province of Lucca, especially from the commune of Barga, and other places in

Tuscany. Far fewer people migrated from Frosinone in Lazio, south of Rome. The Scots Italian

community living and working in Edinburgh was relatively small, and it was dominated by people

from the village of Picinisco in the province of Frosinone.

Figure 9: The Scots-Italians viewer (https://maps.nls.uk/projects/italians/index.html).

68

 https://maps.nls.uk/projects/italians/index.html

https://maps.nls.uk/projects/italians/index.html
https://maps.nls.uk/projects/italians/index.html

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[72]

The core functionality of this application is very similar to the NLSFindbyPlaceGEOJSON

example above. The addresses of the Italians were geocoded and saved as a GeoJSON file, in this

case with the features being point locations, rather than polygons. The GeoJSON details are

selected by a map cursor ‘pointermove’ event, triggering a map.forEachFeatureAtPixel function

to retrieve the name, address, occupation and origin information into a results div. The

alphabetical gazetteer of names was output from the geocoded list in a structured manner,

exporting the lat, lon locations which the map locates to on the user selecting the name. The

structured contents are held in a table HTML markup format.

Scotland - Land Use Viewer

This viewer was developed in 2016 to allow land use in the Scotland between the 1930s and 2015

to be compared in a split-screen viewer (Figure 10). In 2015 the NLS scanned, georeferenced and

put online our 1930s Land Utilisation Survey maps for Scotland, the first comprehensive survey

of the land use in the country. In the summer of 2015, by coincidence, a Historic Land-use

Assessment map (HLAMap) was completed by Historic Environment Scotland. Placing these two

different dates of maps together highlights the significant changes in the Scottish 20th century

landscape, such as tree planting in Argyll and Dumfries, the damming of rivers in the Highlands,

and urban expansion across the Central Belt. The split-screen viewer also allows the user to zoom-

in to review more localised land use change, including changing patterns of arable and pasture

land.

The code behind this application is almost identical to SidebySideOL3 above. The main additional

work involved the styling of the HLAMap vector layer to approximately match the colour coding

of the original 1930s land use maps. The left-hand 1930s Land Utilisation Maps just present two

different scales of georeferenced mapping, made available as ol.source.XYZ sources, within

ol.layer.Tile layers. The right-hand HLAMap layer is stored within PostGIS, and delivered out of

GeoServer (which gave better performance than storing in GeoServer alone). The GeoServer layer

is delivered as an ol.source.XYZ source, within an ol.layer.Tile layer.

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[73]

Figure 10: Scotland: Land Use viewer (https://maps.nls.uk/projects/landuse/index.html).

Thomas Annan photographs

This viewer was created in early 2016 to provide a map-based search interface to a set of

historical photographs of central Glasgow, dating from the late 1860s69. The code for the

application uses components described above, and can be viewed on Github70. The locations of

the photographs are shown using a GeoJSON file of point locations, and when these are clicked

on, a map.forEachFeatureAtPixel function retrieves the specific GeoJSON, returning the results to

a Bootstrap Popover, showing a thumbnail image and text. The URL of the application uses the

Permalink code described in the Basic components section above, to show the particular zoom

level and centre of the map, as well as if a photograph is selected. This also has the advantage of

being able to link from a specific photograph to its location on the map (Figure 11).

69

 https://digital.nls.uk/learning/thomas-annan-glasgow/historical-maps/
70

 https://github.com/NationalLibraryOfScotland/thomas-annan-photographs

https://maps.nls.uk/projects/landuse/index.html
https://digital.nls.uk/learning/thomas-annan-glasgow/historical-maps/
https://github.com/NationalLibraryOfScotland/thomas-annan-photographs

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[74]

Figure 11: Thomas Annan photographs (.https://digital.nls.uk/learning/thomas-annan-glasgow/historical-maps/).

Henrietta Liston’s diaries - map viewer

This viewer was developed in early 2017 to provide a search interface to the travel diaries of

Henrietta Liston in North America and Canada (1796-1801). Henrietta Liston’s husband, Robert

Liston, was a Scottish diplomat, and a newly appointed minister to the United States, and he

travelled extensively with his wife Henrietta, who recorded these journeys in her diaries. The

scanned diaries formed the central content of the website, with the map interface providing a

geographic way of visualising the journeys, as well as a way of selecting particular places to read

relevant diary pages. The code behind the application shares much in common with the Italians in

Scotland in the 1930s viewer, and is available for easier viewing on Github71. It was felt useful to

use a split-screen viewer, so that the accurate points of the itinerary could be correctly located on

a modern map backdrop on the left, but with contemporary 1790s maps of the Americas on the

right. These historic maps were Aaron Arrowsmith's Chart of the world on Mercator's

projection… (1796) at lower zoom levels, and William Faden's The United States of North

America … (1796) at higher zoom levels.The Listons’ itineraries were held as GeoJSON files,

with a file of point locations, and file of basic lines between the points for each journey. The

easiest method of interaction is simply to zoom in to view the maps and click on any point to

retrieve the details (to an upper right div) of when the Listons were there, including a link through

to the relevant diary pages relating to this. This uses a map.forEachFeatureAtPixel function. Two

sets of gazetteer listings were created as structured text with coordinates, one listing the places by

itinerary, and the other as a continuous alphabetical list. On selecting a place, the map locates to

it, this using OpenLayers pan and bounce animations72, to give some dynamism to the application

71

 https://github.com/NationalLibraryOfScotland/ListonMapApplication
72

 https://openlayers.org/en/latest/examples/animation.html

https://github.com/NationalLibraryOfScotland/ListonMapApplication
https://openlayers.org/en/latest/examples/animation.html

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[75]

as well as an impression of the geographical relationships between points. The URL of the

application uses the Permalink code described in the Basic components section above, to show the

particular zoom level and centre of the map, as well as the particular tour and if a place is

selected. This allows the ability to link directly into the viewer to show a specific tour or a

specific place (Figure 12).

Figure 12: Henrietta Liston’s diaries - map viewer (http://digital.nls.uk/travels-of-henrietta-liston/map/).

Conclusions

These applications should all be seen as work-in-progress, and simply as one way, amongst many

others, of making available map library collections. The author is not a Javascript programmer,

and the code reflects this — whilst it works, and is explained in a way that hopefully the non-

programmer can understand, it is not as accomplished, efficient or bug-free as a professional

programmer could produce. As has been illustrated, much of the real value and content lies in the

OpenLayers code itself, which provides the core functionality throughout. The fact that these

interfaces, particularly for georeferenced maps, share much in common with the Mapire.eu

project73 who also make available layers of historic mapping online, reflects the fact that both use

the same core OpenLayers library.

This paper has focused on interfaces for historical maps, and it is useful to bear in mind that

interfaces are probably the most ephemeral of digital library applications; they change fast, and

need to change fast as technology and user expectations continually change. One of the ways of

managing this is to use a widely supported open-source software interface, such as OpenLayers,

migrating the code as it develops, and supporting or adopting new functionality as these are also

73

 http://mapire.eu/

http://digital.nls.uk/travels-of-henrietta-liston/map/
http://mapire.eu/

e-Perimetron, Vol. 14, No. 2, 2019 [59-76] www.e-perimetron.org | ISSN 1790-3769

[76]

developed too. It is recognized that the tools described here will change, and the images of these

interfaces will quickly look dated, but the underlying application code is easy to continually

update. Another useful way of managing continual change is to have a clear model or architecture

of the digital map library, recognizing that components such as interfaces are clearly separate

from other underlying components such as raw images and metadata, and server-side technologies

that deliver these. Although interfaces will need to be updated or changed regularly, the

underlying imagery or metadata should not need to change, and server technologies can be

replaced independently of the viewer applications (Fleet, 2014). Many other library applications

— library management systems, or content management systems, for example — are more

complex integrated systems where the whole technology stack needs to be replaced as a costly

migration exercise.

Geographic or map-based interfaces are a particularly useful and engaging way of making

available library and archive collections online, and these tools and interfaces are offered here in

the hope that other institutions may find them useful, as well as enjoyable to create, in making

their own collections available online. We also welcome comments or code to develop and

improve these viewers.

References

Farkas, G. (2016). Mastering OpenLayers 3: create powerful applications with the most robust

open source web mapping library using this advanced guide. Birmingham, UK: Packt Publishing.

Fleet, C. (2006). ‘Locating trees in the Caledonian forest’: A critical assessment of methods for

presenting series mapping over the web. e-Perimetron, Vol.1, No. 2, Spring 2006 [99-112]. In

digital form, http://www.e-perimetron.org/vol_1_2/fleet/fleet.pdf

Fleet, C. (2014). Old maps and new web technologies: practicalities, impact and potential. SoC

Bulletin 48, 26-34.

Fleet, C. and P. Pridal (2012). Open Source Technologies for Delivering Historical Maps Online

— Case Studies at the National Library of Scotland. LIBER Quarterly 22(3), 240-257. In digital

form, https://www.liberquarterly.eu/articles/10.18352/lq.8052/

Gratier, T., P. Spencer, E. Hazzard (2015). Openlayers 3 beginner's guide: get started with

openlayers 3 and enhance your web pages by creating and displaying dynamic maps.

Birmingham, UK: Packt Publishing.

Langley, P.J. & Perez, A.S. (2016). OpenLayers 3.x cookbook: over 50 comprehensive recipes to

help you create spectacular maps with OpenLayers 3. 2nd ed. Birmingham, UK: Packt

Publishing.

http://www.e-perimetron.org/vol_1_2/fleet/fleet.pdf
https://www.liberquarterly.eu/articles/10.18352/lq.8052/

